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ABSTRACT

Cloud water acidity and ionic content, as measured at the Mount Mitchell
State Park observing site (35° 44' 05" N, 82° 17" 15" W, 2038 m MSL--highest peak
in the eastern U.S.), using a passive cloud water collector, are directly influenced by
the trajectories of cloud forming air masses which pass over areas of varying levels
of pollutant emission. Regions of the United States which are emitters of high levels
of pollutants, such as SOy and NOx, will thus serve to reduce observed pH levels in
cloud water samples and raise the levels of acidifying ions, such as sulfate and
nitrate. Cloud water is one of the best indicators of pollution levels because all
water soluble impurities in one cubic meter of air from an air mass are found
condensed in typically one milliliter or less of the cloud water. The 48-hr backward
trajectories for all 39 cloud events during the 1993 field season (15 May 1993 -14
October 1993) were computed using the Hybrid Single-Particle Lagrangian
Integrated Trajectories (HY-SPLIT) model. Three sectors, identified as the polluted
sector, from 290° to 65° azimuth relative to the site, the continental sector, 240° to
290° azimuth, and the marine sector, 65° to 240° azimuth, were used to classify the
cloud forming air masses. The polluted sector was associated with the lowest
overall pH averages, with the marine sector following closely behind. The highest
average pH values were received from air masses indicated as having crossed the
continental and the marine sectors (in combination), with the largest portions of
those air mass trajectories passing through the continental sector (exclusively
continental sector air masses were also the most frequent). These observations are
in agreement with findings in Colorado where aerosols produced by wind erosion

were responsible for neutralizing the precipitation acidity.
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1. INTRODUCTION

Cloud water acidity and cloud water chemical composition are strongly
associated with the history of the air mass from which the cloud is formed (Castillo
etal., 1983, Kelly ef al., 1984, DeFelice and Saxena, 1990, Lin and Saxena, 1991a,
Lin and Saxena, 1991b, Kim and Aneja, 1992, Aneja and Kim, 1993). Thus,
knowledge of the pollutant emission characteristics of the geographic areas that are
crossed by air masses will help in understanding the chemical makeup of clouds.
Experimental methods of cloud water sampling (Saxena et al, 1989) and
subsequent methods of air mass analysis (Yeh, 1988, Saxena and Yeh, 1989, Lin
and Saxena, 1991b, DeFelice and Saxena, 1991, Kim and Aneja, 1992, Aneja and
Kim, 1993) and ionic analysis (Yeh, 1988, Saxena and Yeh, 1989, Saxena and Lin,
1989, Saxena and Lin, 1990, Kim and Aneja, 1992, Aneja and Kim, 1993), can be
used to identify cloud water constituents and pollutants and aid in the determination
of the air mass history. Pack ef al. (1978), have shown that pollutants can be
transported over long distances (500 kilometers and beyond) by experimenting with
tetroon markers. As a result, changes in cloud water acidity and ionic composition
can be documented along with concurrent observations of the directional changes of
air masses transporting pollutant aerosols and precursors. Determination of air mass
history, however, is not the only manner in which the source-receptor relationships
between emissions and impacts of pollutant aerosols can be inferred. Fan et al.
(1994) have recently used a model employing principal component analysis (Malm ef
al., 1986, Hopke et al., 1993), which combines both chemical and meteorological
data at a site in southwestern Sweden to infer the source regions of aerosols

impacting their observation site.




Interest in the transportation of pollutants has heightened recently due to
their potential effects on the regional and global climate. Natural and anthropogenic
pollutants such as sulfate have the potential to act as effective cloud condensation
nuclei (CCN), and the increased number concentrations of cloud droplets resulting
from an increase of CCN can potentially counteract the greenhouse warming of the
earth-troposphere system. Charlson ef al. (1992) have shown that an approximate
doubling of CCN would be sufficient to counteract the greenhouse warming effect
due to a doubling of carbon dioxide. We therefore have conducted research during
a 1993 field campaign to fulfill a number of objectives related to these potential
climatic implications. We have sought to establish a preliminary relationship
between the chemical properties of the observed clouds as well as precursor
aerosols and/or trace gases by identifying the history of the cloud forming air masses
via back trajectory analysis. In order to limit the uncertainty inherent in back
trajectory analysis, we have accomplished the back trajectory calculations using a
diagnostic computer model with two distinctly different treatments of vertical
motion for every cloud water sample in which the pH was measured. Thus, a
season-long statistical analysis of air mass history for the Mount Mitchell site was
achieved. To the authors' knowledge, this is the first time that a detailed analysis of
air mass history will be reported for each and every cloud water sample retrieved
during an entire field season at remote sampling location. As a result of
accomplishing the statistical survey of the air mass history versus the cloud water
chemistry, we have concurrently added to the growing base of Mount Mitchell
observational data, from which comparisons can be made with previous data in
order that a continuing assessment of long-term regional climate change can be

accomplished. It is the monitoring and assessment of the regional climate that is the
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long-term goal of this research. In this paper, we will also explain how the
experiments were conducted, what experimental platforms were utilized, and what
conclusions may be drawn.

One of the ways through which a study of the long-range transport of
pollutants can be launched is to establish an experimental location that is remote
enough so as to be essentially immune to the effects of local pollution sources and to
be high enough topographically such that it can be considered to be residing in the
"free" troposphere. The location should be accessible to retrieve cloud water
samples which have been subjected to long-range transport. Also, most importantly,
the site must be a plentiful source of cloud water. It is for these reasons that an
experimental site in the Mount Mitchell State Park (35° 44' 05" N, 82° 17" 15" W) --
a United Nations Biosphere Reserve and home of the highest peak (2,038 m or
6,684 ft MSL) in the eastern U.S. -- was chosen. The elevation of the actual
experimental site (Mount Gibbs) is 2006 m MSL, and it is located approximately 4
km southwest of Mount Mitchell. The ridge line upon which the site resides runs
north-northeast to south-southwest. A diagram of the observation site is given
elsewhere (Lin and Saxena, 1991b and Aneja and Kim, 1993). Climatologically, the
fact that the site is immersed in clouds on 71% of the summer days (Saxena e al.,
1989), with 28-41% actual immersion time, measured over the years 1986-1988
(Lin and Saxena, 1991a), is particularly important, because it allows sampling of
fairly substantial amounts of cloud water over short periods of time. Thus,
statistically significant datasets can be assembled in one summer sampling period.
Relevant climatological statistics regarding the observing site at Mount Mitchell are
given in Yeh (1988) concerning mean temperatures, expected dates for the onset of

frost, riming, snow, fog, precipitation frequency, and other criteria.
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2. METHODOLOGY

2.1. Experimental Methods and Data Analysis

Cloud water samples were taken at Mount Mitchell during two month-long
campaigns in June and August of 1993. In addition, cloud water samples were
obtained on one day each in the months of July and October. Lin and Saxena
(1991b) give a description of the guidelines used for the onset and termination of
cloud events.

Ambient meteorological data were obtained by instruments located on the
main observational platform, a 16.5 meter walk-up tower instrumented at the top
with an RM. Young wind speed and direction windbird, a temperature/humidity
probe, and a barometric pressure transducer. All of these instruments were wired to
a recording device located at the base of the tower which could give instantaneous
readouts, 5-, and/or 15-minute averages of wind speed/direction, temperature,
relative humidity, and barometric pressure. The person making measurements at
any given time hand-recorded 5-minute average readings whenever samples were to
be retrieved from the tower (typically at the top of every hour during a cloud event).

The Atmospheric Sciences Research Center (ASRC) (Kadlecek et al., 1983)
passive cloud water collector was located on the tower’s vertically movable carriage,
for the receipt of cloud water droplets during cloud events. Clouds, transported by
the ambient winds, would deposit the droplets upon the strings on the collector,
where they would drip down by gravity into a replaceable nalgene bottle at the base
of the collector. These collection bottles would be replaced every hour during a
cloud event and the resulting sample would be taken to an examination point where
preliminary analysis would be undertaken. Preliminary analysis consisted of a check

7




and double-check of the pH with a standard pH probe and weighing of the sample.
The remainder of the sample, if any, was then bottled, sealed, and refrigerated for
further analysis of ionic composition and a re-check of the pH. A Forward-
Scattering Spectrometer Probe, or FSSP (Knollenberg, 1981), was deployed upon
the same vertically movable carriage as the ASRC, and had the versatility of
rotational movement, so as to be horizontally trained into any ambient winds. This
device was used to obtain number counts and size distributions of cloud particles
over specific time periods, such that calculations of average radius, droplet number
concentration, and liquid water content (LWC) would be possible upon further
analysis. During a cloud event, the FSSP would be activated and would
continuously intake cloud water droplets, while being pointed into the prevailing
wind direction. The cloud microphysical parameters received by the FSSP were
then instantaneously transmitted to an analog receiver where the droplet sizes and
counts were subdivided into size bins. The continuous receipt of droplet data were
then sent to a desktop computer where the data were saved to floppy disk for
subsequent data reduction.

Excess cloud water samples, which were bottled, sealed, refrigerated, and
returned to N.C. State, underwent subsequent ion chromatography analysis at the
North Carolina State University Department of Soil Sciences for aerosol content of
the following ionic species: SO4, NO3, NH4', CI', Na*, K, Mg™", and Ca™". Kim
and Aneja (1992) provide a more detailed discussion of how these ions are
measured and analyzed. Mass, molar, and equivalent concentrations for these ionic
constituents were tabulated for a total of 234 cloud water samples for the entire field

season, 138 for June, 2 for July, and 94 for August of 1993.




2.2. Cloud Event Characterization

Markus ef al. (1991) have stated that there are three primary mechanisms
responsible for the formation of clouds in mountainous areas. These are: large-
scale weather systems, resulting in widespread regional cloudiness, orography,
resulting in localized cap clouds; and solar heating, which gives rise to cumulus-type
clouds. The cloud events as seen at Mount Mitchell were primarily of the first two
types, with a resulting impact on the cloud event lengths. Thus, for the
characterization of cloud events, two categories were used: long and short. Long
events were those of greater than 8 hours duration, usually associated with synoptic-
scale (frontal or upper-level) disturbances (Lin and Saxena, 1991b). Short events
were those of 8 hours duration or less, generally ascribed to local or regional
orographic forcing mechanisms (Lin and Saxena, 1991b). Of the 37 cloud events
registered during June and August of 1993, 8 events were long events and 29 events
were of the short variety (there were 2 additional short events observed in July and
October of 1993, one in each month, for a grand total of 39 cloud events registered
for the entire 1993 field season). Table 1 gives the number of events for each month
as well as the total time, by event category, of all events occurring within each
individual month of sampling for the entire field season. The actual immersion time
for the site in clouds during potential sampling periods was somewhat difficult to
assess since the site, for periods of time, was not always manned. However, based
on a rough estimate of the total number of possible sampling days versus the
estimate of total number of hours of sampling given in table 1, immersion time of
clouds at Mount Mitchell for our field study was approximately 17%. For each of
the individual cloud events, we have compiled a list of the mean pH values observed

for those events, the corresponding event length type, and whether or not liquid
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precipitation was observed in the event. This listing is given in table 2, and shows
that the mean pH values for short events ranged from 2.51 to 4.76, the mean pH for
long events ranged from 3.02 to 3.76 and liquid precipitation was observed during
both types of events, but more commonly for long events (50% of long events

contained liquid precipitation).

2.3. Air Mass Categorization and Determination

Categorization of air masses traversing the Mount Mitchell observation site
was accomplished by utilizing anthropogenic emissions data of SO, and NO,
provided by the Environmental Protection Agency (EPA, 1993). Because of the
importance these pollutants have regarding atmospheric chemistry on local, regional,
and global scales (Dignon, 1992), we were able quantify the emission patterns of
these pollutants, by converting the raw data from the Regional Emission Inventories
into a format whereby any given state in the eastern U.S. falls within a certain range
of values as given in figures 1 and 2. Clearly, air masses traversing the Ohio Valley
regions of the United States for both SOx and NOy and also the northeast Atlantic
coast in the case of NOy, are shown in the figures to be areas of highest average
emissions of these pollutants.

In a manner similar to Ogren and Rohde (1986) and Hansen et al. (1990),
we have been able to put each of the states in the eastern half of the U.S. into a
particular anthropogenic emission range category. A pollutant region (sector) label
was assigned to certain geographic areas relative to the Mount Mitchell observing
site. Figures 1 and 2 show that all geographic areas in relative azimuthal proximity
to Mount Mitchell, have been divided into three primary regimes (Yeh, 1988,
Saxena and Yeh, 1989, Lin and Saxena, 1991b, Kim and Aneja, 1992). The system
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characterizes cloud forming air masses as being "polluted” if they are transported
from a region bounded by 290° to 65° (Sector 1) azimuth relative to Mount
Mitchell, "marine” if transported from a region bounded by 240° to 65° (Sector 2),
and "continental” if transported from a region bounded by 240° to 290° (Sector 3).
Obviously, considerable cross-over from region to region is possible and expected,
and for data which will be subsequently presented, the crossover characteristics will
be duly annotated by giving a dual or even triple representation of the air mass
sectors crossed. For example, in situations where over 50% of a calculated back
trajectory falls within one sector and the remainder falls within another, the air mass
characterization will be listed as primary air mass sector (over 50% of the trajectory)
followed by the secondary air mass sector (less than 50% of the trajectory).

By taking a circular 1200 kilometer radius (assumed for air parcels averaging
25 km/hr for 48 hours) around the observation site, we have assessed the
anthropogenic air mass sector emissions relative to Mount Mitchell, which are given
in table 3 for both SOx and NO,. From this table, which includes data from a
previous EPA emission inventory in 1985, it is evident that Sector 1 has the highest
overall anthropogenic emissions followed by Sector 2 and Sector 3 in descending
order for both types of pollutants. However, a comparison between the two
inventories indicates that Sector 1 SO, emissions have been reduced 8.0%, Sector 2
emissions were lower by 11.6%, with NOy emissions actually shown to rise over the
six-year period (15.8% for Sector 1, 12.4% for Sector 2, and 13.7% for Sector 3).
The large discrepancy between the Sector 3 SOx emissions for the two inventories is
unexplained, but probably has to do with either differing calculation methods or the
overall areas within the sector being considered. If there has been such a substantial

increase in SOy emissions from the continental sector during the six-year period
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between the inventories, an in-depth investigation of the emissions should be
undertaken to explain the causes.

Sulfate aerosols have been hypothesized to be effective CCN (Hegg et al.,
1984, Hegg et al., 1991, Parungo, et al., 1994), and will be shown later to be the
main aerosol responsible for acidifying the cloud water.  Twomey and
Wojciechowski (1969) have stated that CCN over marine areas generally have a
residence time on the order of three days, while Charlson et al., (1992) have
asserted that the residence time of sulfate aerosol is "several” days. Based on these
statements and assumptions, and the realization that the error in characterization of
air mass movement beyond at least three days can become substantial, we have
chosen to investigate the long-range transport of aerosols in cloud forming air
masses by calculating 48-hour back trajectories.

The Hybrid Single-Particle Lagrangian Integrated Trajectories (HY-SPLIT)
(Draxler, 1992) model was chosen for the determination of the 48-hour air mass
back trajectories in this study due its compatibility with desktop computers and
high-resolution Nested Grid Model (NGM) meteorological data sources (see table 4
for a summary of the HY-SPLIT model's most important facts and assumptions).
This model is an analytical algorithm which provides the user many options for
calculated output, everything from forward and backward trajectories to dispersion
of air concentrations to surface and upper level maps of many meteorological
parameters (relative humidity, vertical velocities, wind patterns, and many more).
For the purposes of this investigation, we were interested in calculations of
backward trajectories, as these are the best indicators, without the aid of tracers,
balloons, and even aircraft, of the origins and subsequent pathways of air masses

forming clouds at the Mount Mitchell observation site. The actual calculation
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routines for the generation of back trajectories are explained and demonstrated in
Draxler (1992) and will not be discussed here. The mathematics involved in the
calculations are all based on finite differencing and interpolation approximations of
the primary meteorological equations of motion and meteorological
thermodynamics.

There are four ways in which the HY-SPLIT model can be used to calculate
back trajectories of cloud forming air masses, and all four differ unly in the manner
in which the vertical motion of the trajectories are treated. The four calculation
options are: (1) a "data" option, in which air parcel trajectories utilize vertical
motion calculations already provided within the framework of the NGM
meteorological data, (2) an "isobaric" option which allows for no vertical motion at
all, (3) an "isosigma" option, where air parcels are forced to maintain a constant
ratio of their pressure level value to a model surface pressure level value, and (4) a
“divergence" option, which calculates the vertical motion of air parcels along a
trajectory by using an integrated form of the continuity equation, instead of
including vertical velocity data from the NGM as in (1). The data option and the
isobaric option were used to calculate back trajectories for every sample in which
cloud water resulted in at least an observation of pH, whether or not any remainder
was available for further ionic analysis. The isosigma and divergence options were
employed for some special cases, such as cases where the observed pH was found to
be below a threshold of 3.0 or greater than 4.0, for cases of special interest, such as
observations which coincided with remote observational methods, or cases where
there occurred some ambiguity as to the categorization of the back trajectory, e.g.,

back trajectories which ran along sector lines.
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3. RESULTS AND DISCUSSION

3.1. Air Mass Arrival Direction versus Local Wind Flow

Local winds at Mount Mitchell in previous years and in our study have been
shown to arrive in two distinct regimes relative to the ridge line upon which the
observation site resides. 92.2% of all cloud event samples resulting in an
observation of pH were found to coincide with observed winds arriving either from
a zone of 90° to 150° or from a zone of 240° to 330° azimuth relative to the
observation site (see figure 3). These regimes are approximately perpendicular to
the north-northeast to south-southwest ridge line upon which the site resides, and
this occurrence has also been documented for a similar topographical scenario by
Mohnen et al. (1987) at Whiteface Mountain, New York. It is therefore of further
interest to note the approximate percentages of air masses which are shown to arrive
at Mount Mitchell in roughly the same direction as the observed winds, to help
determine the actual requirement for a detailed set of air mass back trajectory
analyses. The percentage of air masses found to arrive at the site from HY-SPLIT
calculations within 30° on either side of the observed wind direction for the same
time period was 60.6 % for trajectories calculated with the NGM data option and
61.7 % for back trajectories calculated in the isobaric format. Thus, we see that
only approximately 3 out of 5 air mass inflow directions, based on our field results,
coincide with in situ wind observations using a 30° margin-of-error to account for
uncertainties in the wind direction and air mass inflow direction. Because of the
regimented nature of the wind observations, and the fact that air masses have been

shown via HY-SPLIT to arrive from virtually all circumferential directions relative
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to the site, we have demonstrated a substantial need for determining air mass history

by back trajectory analysis as opposed to inference from in situ wind observations.

3.2. Field pH Results

From the entire field season, 192 cloud water samples were retrieved which
allowed a measurement of pH. From these, a total of 234 individual samples of
cloud water remained available for subsequent ionic concentration analysis. The
discrepancy between the two amounts is a result of the fact that cloud water sample
receipts were of many different amounts. These amounts ranged from samples which
were barely large enough to measure the pHo samples which overflowed the
nalgene sampling bottle and resulted in more than one ionic testing sample from one
measured pH. Thus, we had situations where multiple ionic results may have been
gained from one sample, or, in opposite fashion, an observed pH may have had no
ionic composition data associated with it. Nevertheless, the choice for determining
when to calculate a back trajectory with HY-SPLIT rested with the observation of
whether or not a pH was measured from a particular sample. Thus, there were
cases where one set of trajectories were represented for more than one set of ionic
data, and vice versa, where trajectories were calculated, but have no associated ionic
composition results.

Similar to methods employed by Falconer and Falconer (1980) at Whiteface
Mountain, we have subdivided the entire range of pH data from all sampling periods
into subranges which demonstrate the relative frequencies of pH values. Figure 4 is
a piechart representing the summary of all the pH values from the entire field season.
The range of 3.26 to 3.45 is shown to be the largest slice. This range was not only

most common for the entire field season, but also included the pH averages for both
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of the primary sampling months of the campaign (3.33 + 0.34 for June, 3.41 + 0.40
for August, and 3.37 + 0.45 overall). For figure 4, the relative frequencies of the
pH values were taken from the previously mentioned database of 192 overall pH
measurements, not from data taken in concert with the ionic concentrations.
In terms of relative pH statistics, a summary of the extreme pH values

observed from the data is given as follows:

Highest observed pH: 4.78; 3 October 1993, 1230 GMT

Lowest observed pH: 2.47; 20 August 1993, 1700 GMT

Highest average pH for a cloud event: 4.76 + 0.03; 3 October 1993

Lowest average pH for a cloud event: 2.51; 10 June 1993 (one

observation only)

High pH receipts such as that from 3 October (but not specifically from that event)
were usually not a result of cloud water only, but from either cloud water mixed
with rain and/or drizzle or exclusively from rain. This phenomenon has been
previously observed and can be attributed to the dilution effects of higher amounts
of available liquid water (Mohnen, 1990, Saxena and Lin, 1990, Markus et al.,
1991). Cloud events containing rain mixed with cloud water or rain only were very
common, particularly with long events. 11 of the 39 total events contained some
sort of liquid precipitation and 4 of the 8 long events (3 in June, 1 in August)
contained the same. Second, the low 2.47 pH value occurred at the end of a cloud
event, which was very common, since both at the beginning and at the end of many
cloud events, the clouds involved tended to have very low liquid water contents.
This situation resulted in smaller droplet sizes and higher acidity due to the loss of
water to the local canopy, evaporation, and nucleation scavenging (Saxena et al.,

1989, DeFelice and Saxena, 1990). Third, the lowest average pH for a cloud event
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(2.51) was the only observation during that short event, and thus had no standard
deviation, although it must be remembered for this and all other observations, that
there existed an approximate 5% pH instrument error possibility. Though this factor
was not included in the pH statistics, it must be considered when assessing overall

pH patterns and for individual pH measurements.

3.3. Summary of Field Results for lonic Species in Cloud Water

Upon return of refrigerated sample residuals ("splits") to the Department of
Soil Sciences at North Carolina State, the samples were analyzed for ionic content
of SO4~, NO3', NHy', CI', Na*, Ca™", K*, and Mg™". Results of this analysis were
provided for a total of 234 samples from the entire field season (138 in June, 2 in
July, and 94 in August).

Concemning the cloud water pH, it was our expectation that the sulfate and
nitrate aerosols, and particularly the sulfate, would be responsible for the substantial
reduction in the acidity. Hegg and Hobbs (1979, 1981) have demonstrated that
oxidation of SO, is the primary mechanism for the production of sulfate in clouds,
and previous work at Mount Mitchell has clearly indicated that the SO, precursor
gas and the resulting sulfate is the primary contributor to the acidity of cloud water
at that location (Yeh, 1988, Saxena and Yeh, 1989, Saxena ef al., 1989, Saxena
and Lin, 1990, Lin and Saxena, 1991b, Kim and Aneja, 1992, Aneja and Kim,
1993).

Table S shows the mean concentrations, in peq l’l, of all major ionic
constituents of the cloud and rain water received at Mount Mitchell for the 1993
field season. Inspection of the table demonstrates, that for the chosen pH ranges,

both sulfate and nitrate concentrations are inversely proportional to the cloud water
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pH. For the entire field season, the inverse correspondence for both ions is clear,
with a minor deviation from the pattern in the nitrate/pH range of 2.86 to 3.05.
Also of note however, is that the standard deviations for all ionic constituents were
at least an appreciable fraction of, or in some cases greater than, the mean
concentrations shown for a given species. The high deviation values are the results
of fairly wide spreads in observed concentrations within the respective pH ranges.
The ammonium ion is thought to be the primary aerosol of neutralization for the
sulfate and nitrate, and is often in chemical combination as either ammonium sulfate
or ammonium nitrate. Thus, its pattern of concentration for the various pH ranges
should somewhat mirror those of the sulfate and particularly the nitrate. The
ammonium does, in fact, sequentially decrease along with decreasing levels of both
sulfate and nitrate, except for the 2.86 to 3.05 and 3.06 to 3.25 pH ranges, where
also the nitrate displays a similar characteristic. This is indicative of close chemical
associations between the nitrate ions and the ammonium ions. Comparisons of the
relative concentrations of sodium and chlorine ions indicate contradictory patterns.
Though some sequential decrease is observed for these ions with sequentially
increasing pH ranges, there are obvious exceptions to this pattern for the 3.06 to
3.25 range in the case of chlorine and for the three pH ranges covering 3.06 to 3.65
in the sodium examples. Also, the range for pH values greater than 4.25 are
extremely high for both ions when measured against all of the other ions. Table 6
gives the results of CI'/Na" mass concentration ratios for each of the pH ranges
discussed in table 5. We would expect that higher ratios would be observed
coincident with lower pH ranges, assuming that industrial emissions of chlorine, if
emitted for example as HCI, would be coincident with expected low pH values in air

masses passing through more polluted regions. However, even though a general

18




decreasing ratio pattern is observable as the pH ranges increase, which would be
consistent with the assumption of higher pH's being associated with cleaner air
masses, there are deviations from the pattern in a number of ranges (see pH < 2.66,
pH 2.66-2.85, pH 3.46-3.65 and pH > 4.25). Reasons for these pattern deviations
could include small errors in the chlorine and/or sodium ion concentrations, errors in
the actual measurements of the cloud water pH and/or large numbers of pH values
being concentrated near the range bounds for certain cases. Regarding the other
analyzed ions, it is shown that concentrations of the calcium and magnesium ions
decrease with increasing levels of pH. The same observation is also true of the
potassium ion, but since this ion is most closely associated with cloud forming air
masses containing marine sector origin, expectations of decreasing concentrations
with increased pH ranges would not be as strongly correlated, due to the marine

sector having intermediate levels of pH-reducing anthropogenic emissions.

3.4. Hydrogen lIon Concentration Analysis

It is essentially the hydrogen ion concentrations, along with the ammonium
ions, that must be neutralized and/or overcompensated for, mainly by sulfate and
nitrate, in order for cloud water pH values to become as low as has been observed in
the 1993 field season and previous field seasons. However, since the hydrogen ion
concentrations cannot, as yet, be measured directly from cloud water samples either
at the field site or as a result of ionic analysis, the hydrogen ion concentrations had
to be either inferred or approximated by calculations of ion balance.

From both the field-measured values of acidity and subsequent laboratory
analysis of the pH, a direct calculation of the hydrogen ion concentration was found

with the following relationship:

19




pH = -log [H']. (1)

From all field-measured and laboratory-measured pH values was calculated a
corresponding hydrogen ion concentration value using this formula. Additionally,
the method of using a summation of all analyzed ions (electroneutrality) to
approximate the hydrogen ion concentration was used. The electroneutrality result
was necessarily an approximation since not all possible ions could be analyzed for,
but there are many instances in the literature where the eight ions which were
analyzed from the cloud water in this study have been used to provide an accurate
assessment of cloud water acidity and hydrogen ion concentration (Castillo et al.,
1983, Lazrus et al., 1983, Waldman ez al., 1985, Collett et al., 1989, Collett et al.,
1990, to name a few). Therefore, the electroneutrality calculation was made using

the following relationship:

[H]= {2x[SO,]} + [NOs] + [CI] - [NH('}- [Na'] - [K']  (2)
- {2x [Ca™]} - {2x [Mg™]}.

The results of calculations made using this equation have also been tabulated from
the analyzed ionic data, and from those, a calculated pH. Results of both methods
have been averaged for June, August, and the entire field season and those
summaries are given in table 7. The variability in the June data, particularly
regarding the average pH generated from the "calculated" hydrogen ion
concentration, resulted in an average pH which was much higher than the average
field pH. This was the result of errors in the pH and ionic data from early June. The
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net effect of this problem was that acidity averages from the first half of June were
consistently elevated above the field values, which, for our purposes, had to be
considered the most reliable, since they were measured in-situ with no lag time
between retrieval and measurement (laboratory samples may have been refrigerated
for long periods of time before pH testing). Also of note from the June data were
the large standard deviations of the "calculated” and laboratory pH values. These
are indicative of a much wider range of values compared to the field values and
reflect a certain inconsistency in the data which is not seen in August for any of the
categories.

Perhaps the best indicators of not only the validity of the ionic data but also
the dependence of the pH on the sulfate concentrations are correlation coefficients
between the various ionic constituents and the respective hydrogen ion
concentrations. Table 8 gives all of the correlation coefficients between these
parameters. A high correlation (at or greater than about 0.90) between the sulfate
and the hydrogen ion concentration has been shown (Yeh, 1988, Saxena and Yeh,
1989) to prove that the sulfate is the dominant ion responsible for the reduction in
overall pH levels at Mount Mitchell. Correlation coefficients should also be high,
but not necessarily as high, for nitrate and oppositely, ammonium, which serves to
counteract the effects of the sulfate and nitrate. Table 8 shows however that there
was a significant deviation from this pattern in June for all three of these ions, where
the unusually low correlation between these ions and the hydrogen ion concentration
is seen only for the field pH values. There is however, an extremely strong
correlation between sulfate, nitrate, and ammonium ions with the hydrogen ion
concentration for both the laboratory and calculated categories. There is no such

disagreement in August, where correlation coefficients for all ionic species are in
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excellent agreement. Based on these correlations therefore, and assuming an error
in some of the June data, there is little question that the sulfate and nitrate were
primary contributors to the reduction in cloud and rain water pH, and that the
ammonium and hydrogen ion concentrations were the most significant neutralizing
agents. It would also appear that the other ions, due mainly to their much lower
overall concentrations, did not contribute appreciably to the acidity levels of the

cloud/rain water observed at Mount Mitchell for the 1993 field season.

3.5. Summary of HY-SPLIT Model Results of Back Trajectories

Overall, we calculated 572 individual trajectories for all cloud events in all
four trajectory calculation regimes (270 trajectories in June, 4 in July, 288 in
August, and 10 in October), regardless of the presence of an indicated pH value. As
mentioned previously, the large majority of these trajectory calculations were made
in both the data and isobaric configurations, with a few extras calculated in the
isosigma and divergence modes. From the total number of trajectories presented
above, we decided to further break down the numbers of trajectories by reporting
only those trajectories which actually matched in time with a reported pH value (not
all trajectories run necessarily coincided with a pH receipt, but were sometimes
calculated in order to maintain the temporal continuity within a given cloud event).
This resulted in the reduction of the numbers of trajectories to a total of 480
trajectories (238 in June, 4 in July, 230 in August, and 8 in October). The results of
producing this subset of trajectory categories, shown in figure 5a, yielded no
appreciable changes in the overall pattern of trajectory frequencies. The continental
air mass regime represented the most of all types (34.2%) followed by the marine
(18.8%) and C/M categories (10.6%) for the aggregate of the field season. Shown
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in figure 5b is a schematic representation of figure 5a (minus the M/C/P and M/P/C
sector categories). This figure gives the representations (by the relatively-sized
arrows--not drawn to actual scale) of the numbers of each type of air mass back
trajectory calculated for the whole field season for all cloud events, regardless of pH
observation. This figure is presented to provide a visual account of the relative air

mass incursions at Mount Mitchell for our field study.

3.6. Summary of HY-SPLIT Model Results for Cloud Water Acidity

For field pH data which was matched in time with ionic composition data
(234 observations from the field season), we have taken the pH values which
corresponded with the trajectories generated for the same observation times and
assessed the variance in pH level with air mass sector categories, as shown in figures
6 and 7 for the entire field season (laboratory and calculated pH values were ignored
for this analysis, since field values were deemed the most reliable). Because all
trajectories were generated in the data and isobaric vertical motion options for all
pH and ionic data, plots of the mean and deviations of these quantities were
generated for both types of calculations.

Very little overall difference between figures 6 and 7 is evident, as it clear in
both that the highest mean pH values were found associated with trajectories from
the C/M trajectory category, which had an mean pH value of 3.89 t 0.42 for the
season when trajectories were calculated with data option as opposed to a mean of
3.82 + 0.38 when isobaric trajectories were generated. For both types of back
trajectories, this occurrence can be explained by the fact that a large number of the
pH receipts obtained associated with C/M trajectories were found during periods

where both cloud and rain water (or rain by itself) were observed at the tower,
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particularly during the long event in August. High mean pH values (3.57 + 0.37 for
the data trajectories and 3.63 + 0.41 for isobaric trajectories) were also observed in
cases where the cloud forming air masses were shown to come from the continental
sector exclusively. Elevated pH levels for air masses from the continental sector are
consistent with the low average anthropogenic emissions of SOx and NOy from the
continental sector as compared to Sectors 1 and 2. All other pH averages for the
remaining trajectory/sector combinations were at or below the seasonal mean of
3.37. Trajectories shown to be either marine exclusively or where the trajectories
passed primarily within the marine sector (marine, M/C, and M/P) were all very
similar independent of vertical motion option, and all of these types were associated
with mean pH values below the seasonal mean. Air masses moving through the
polluted sector corresponded with variable results. Exclusively polluted sector
trajectories were allied with some of the lowest averages for both types of
trajectories, and the same is true of the C/P category, where the concurrent low pH
averages indicate that despite air masses in this category being mostly continental in
nature, even a small amount of air mass movement through the polluted sector can
impact the pH of the cloud water transported by the air mass. Similar arguments
can be applied, regarding the secondary air mass, to the P/C category in both
calculation options, as the mean pH for this category is higher than for all other
categories indicating polluted sector passage, regardless of whether or not the

polluted sector was the primary or the secondary sector.

3.7. Summary of HY-SPLIT Model Results for lonic Species in Cloud Water
Table 9 gives the mean ionic concentrations for each of the sector categories

from the entire field season when back trajectories were calculated in the HY-SPLIT
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data option. Tabular format was chosen over graphical format in this case due to
the extremely large standard deviations of the calculated values in some cases. In
this table, we see that equivalent sulfate concentrations dominate all equivalent ionic
concentrations in every associated trajectory category. Since all pH values for the
entire field season were below the CO,-equilibrated value of 5.60, this observation
was certainly expected. However, it is of interest that all sulfate concentrations over
1000 peq I'' were matched with trajectory categories shown to have polluted sector
air mass influence, regardless of whether or not the poltuted sector was primary or
secondary when in combination with other sectors. Similarly, all nitrate
concentrations over 58 jeq I, except for the marine air mass sector, were shown to
be associated with polluted sector influence. The mean values for both ions are thus
consistent with the expectation of higher anthropogenic emissions of sulfur and
nitrogen-based anthropogenic pollutants from Sector 1. Ammonium, which along
with hydrogen ion, is primarily responsible for the neutralization of the sulfates and
nitrates, had the second highest mean equivalent concentrations throughout the field
season of all eight analyzed ions. Ammonium ion concentrations, when related with
various air mass regimes, showed very similar traits to that of the sulfate and nitrate,
with the higher concentrations associated with air masses shown to have passed at
least partially through the polluted sector. Sodium and chlorine ion concentrations
are shown to be most closely associated with the marine sector, as would be
expected. However, since some high values of chlorine and sodium were both
observed with continental and polluted sector combinations, an investigation of the
CI/Na" ratio was conducted to determine which ion is more closely asso~iated with
land-based industrial emission. Industrial ejection of gaseous chlorine has been
postulated by Petrenchuk and Drozdova (1966) and Saxena and Lin (1990), thus, it

25




would be expected that the CI'/Na' mass concentration ratio would be elevated over
more highly polluted areas, while the ratio would be expected to be closer to the
1.80 sea-water value (Millero, 1974) for air masses shown to be mainly marine in
origin. Table 10a gives the respective ratios for each sector category, where it is
observed that the ratios are much higher where the polluted sector category is
represented (P/M, C/P, and M/P), indicating that chlorine, moreso than sodium, was
associated with anthropogenic emission areas on land. Values closer to 1.80, such
as for the marine, M/C, and C/M categories, all have the marine air mass sector
represented, which indicates the likelihood of maritime air contributing to the
reduced ratio. The potassium ion concentration is shown in table 9 to be weakly
correlated with marine air masses and air masses where the marine sector is
represented in combination. Calcium ion concentrations show a moderately strong
correlation with polluted air masses (P/C, C/P, and polluted categories yielded the
highest values), which is also chemical behavior we would expect given that this ion
is usually associated with anthropogenic activities such as cultivation and
construction (Gorham et al., 1984, Lin and Saxena, 1991b). The magnesium ion is
shown to have the highest concentrations paired with the C/P and P/C sector
categories, although high averages were also associated with marine sector
categories as well. Magnesium, which is an ion most closely linked with agricultural
activities, shows higher concentrations from air masses which have crossed land
areas, but the high values for air masses of marine area passage were not expected.
It is true, however, that nearly all marine sector air masses crossed substantial
amounts of land prior to arrival at the observation site, thus, some land-based ionic
constituents could have been represented in air masses indicated to have crossed

areas falling withua the marine sector.
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Table 11 providss the same information as table 9, but for air mass back
trajectories which were calculated isobarically. With minor variations, the sulfate
and nitrate ions again are shown to have their highest concentration levels associated
with air masses of both primary and secondary polluted sector influence, with some
of the lowest levels associated with continental air mass influence. The ammonium
concentrations are also similar in this regard Chlorine and sodium ion
concentrations for air mass trajectories calculated isobarically again reflect expected
higher concentrations for air masses shown to be mainly marine in origin. The CI’
/Na" mass concentration ratios for isobaric back trajectories are given in table 10b,
and differ little from those given for data trajectories, except for small increases
upward for some of the categories (marine, polluted, C/P, P/C, and M/C/P
categories). Otherwise, the ratios all again reflect overall increases for air masses
containing non-marine influence (M/P category excepted). Potassium
concentrations also varied little with calculation option and were again shown to
have high concentrations correlated with marine air masses or air masses indicated
to have passed through the marine sector (marine and M/P had the highest mean
potassium concentrations). The calcium ion concentrations were found to be
highest when paired with the C/P and P/C sector categories, as with the data
calculations. The highest equivalent concentration of magnesium ion was again
linked with the C/P category, but the second highest value was found associated
with the marine category, which, as in table 9, is not an expected result for an ion

most commonly linked with anthropogenic processes.




4. CONCLUDING REMARKS

For both types of trajectory calculation routines, air masses which were
found via HY-SPLIT to be of polluted origin were correlated with the lowest mean
pH values. Highly polluted (exclusively Sector 1) air masses however, were rare for
the entire field season (less than 3% of the total in the data configuration and lcss
than 4% of the total in the isobaric configuration). Marine sector air masses (singly
and in combinations), resulted in cloud water pH values lower than from previous
years. A possible explanation is that heavy pollutant emitters near Mount Mitchell
to the south, southeast, or east, may have emerged. However, it is also possible that
the use of a different trajectory model, and/or a re-defined manner of assessing the
air mass origin, may have resulted in the downward pH trend. These trends were
observed regardless of the trajectory calculations used. Continental air masses, and
air masses containing either primary or secondary continental influence yielded
mixed results. Exclusively continental air masses were the single most commonly
observed air mass from the field season and also were correlated with some of the
highest pH observations and corresponding low values of acidifying ion
concentrations. Elevated levels of cloud water acidity for cases coincident with
continental sector influence can be attributed to a combination of low pollutant
aerosol emissions from Sector 3, as well as from the neutralizing impact of medium-
to-high levels of alkaline soil aerosol particles such as calcium and magnesium ions.
Nagamoto et al. (1983), have shown that soil-based aerose! produced by wind
erosion can result in the neutralization of cloud water near Denver, Colorado. For

land-crossed air mass categories which we have shown to display high average




concentrations of alkaline cations, a net increase in cloud water acidity may have
been enhanced due to these aerosols.

Results of the averages of both pH and ionic data indicated that there was
little difference between the two types of trajectory calculation routines. Small
variations were evident, but the large majority of back trajectories resulted in air
masses crossing the same sectors for the same ending times at Mount Mitchell,
independent of vertical motion option. For the 234 cases which included ionic data,
the air mass sectors were identical 85.5% of the time.

Correlations between sulfate and hydrogen ion concentrations for field,
laboratory, and calculated values based on electroneutrality showed that the sulfate
continued to be the primary contributor to the acidity of cloud and rain water at
Mount Mitchell, with nitrate, ammonium, and hydrogen ions essentially controlling
the observed acidity levels. Since the sulfate and nitrate were the ions mainly
responsible for reducing cloud water pH values, and since these ions were found to
have their highest average concentrations associated with polluted sector air masses,
we have demonstrated that air masses originating from, or passing through the
urban-industrial regions of the U.S. can impact the chemical properties of clouds at
remote, rural locations. Because these aerosols (both natural and anthropogenic)
can be very efficient CCN, extrapolation of our observations would indicate that
anthropogenic emission of the precursor aerosols and gases of sulfate and nitrate
from all areas can impact the regional and possibly global climate. It is thus of
considerable importance to continue the monitoring of not only the emission
patterns of these pollutants, but also the physico-chemical effects of these pollutants

as well.
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ABSTRACT

In situ cloud measurements were taken during 39 individual cloud events
between June and October 1993 in Mount Mitchell State Park, North Carolina.
Cloud droplet spectra, obtained using a Forward Scattering Spectrometer Probe
(FSSP) were used to determine total droplet number concentration, average droplet
radius, and liquid water concentration. A total of 113 hourly cases were recorded
with simultaneous FSSP spectra, cloud water acidity, ionic content, and
meteorological data. A positive correlation was detected between the cloud water
pH and droplet radius (r2 = 0.47). Also, a negative correlation was detected
between the cloud water pH and droplet number concentration (r2 = 0.64). The
data were then sorted into three populations based on the pH: pH < 3.0 (n = 18),
30<pH<3.7(n=71), and pH > 3.7 (n = 24). It was observed that lower pH
values were associated, on average, with higher cloud droplet number
concentrations and lower radii, and vice versa. For nine cases, cloud albedo was
determined from measurements of the NOAA satellite-based Advanced Very High
Resolution Radiometer (AVHRR). These albedos were shown to vary directly with
the number concentrations of cloud droplets and cloud condensation nuclei (CCN)
and inversely with the average droplet radius and cloud water pH. Cloud reflectivity
values calculated from in situ cloud microphysical and meteorological measurements
were found in agreement with the values obtained from the AVHRR within error
limits. Air mass history of the nine cloud cases was determined from back
trajectories calculated with the Hybrid Single-Particle Lagrangian Integrated

Trajectories (HY-SPLIT) model. It was shown that the air mass trajectories were
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consistent with the experimental values of cloud water pH and cloud water ionic

content, the polluted air masses being associated with higher cloud albedos.




1. Introduction

There is currently significant interest in understanding the effect that
pollutants present in cloud forming air masses have on the resulting cloud droplet
sizes and number concentrations. Of particular interest are those pollutants which
produce cooling effects upon the atmosphere that serve to counteract the
greenhouse warming effects of CO,, and which are effective cloud condensation
nuclei (CCN), such as SO,-derived sulfate (Hegg et al 1984; Hegg et al. 1991).
This interest has been fueled by the debate over anthropogenic climate forcing.
Given the potential effects of climate change on human life, it is important that our
fundamental theoretical understanding be supported by a wealth of field data that
will quantitatively describe the relevant processes which produce both cooling and
warming perturbations in climate on regional and global scales.

It is theoretically understood that pollution (natural and anthropogenic) can
affect climate by altering the radiative transfer through the atmosphere. When
released into the atmosphere, carbon dioxide and other greenhouse gases trap
outgoing longwave radiation which results in heating of the earth-troposphere
system. Since these greenhouse gases reside in the atmosphere for long times and
are well mixed, increased concentrations should produce long-term climate warming
on a global or regional scale.

Anthropogenic effluents such as SO, and NO> undergo gas-to-particle
conversion and increase the aerosol loading of the atmosphere. Through single
particle scattering of incoming solar radiation, increased aerosol reduce the total
solar energy flux reaching the earth's surface (Charison et al. 1992). It is also
understood that low level clouds produce an indirect cooling effect by increasing the
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planetary shortwave albedo (Twomey 1991). Increasing anthropogenic emissions
can potentially enhance this cooling effect by changing the cloud droplet
distribution, which largely determines the cloud optical depth and albedo. Since
some anthropogenic aerosols form efficient cloud condensation nuclei, under
identical conditions of cloud formation (e.g., a constant amount of cloud forming
water vapor), elevated CCN levels should produce greater droplet concentration and
reduced droplet size (Saxena 1991; Leaitch et al. 1992). Since aerosol production is
very inhomogeneous over the earth's surface and residence times are only on the
order of a few days, this cooling would be restricted to a regional or local scale and
potentially vary widely over time.

Charlson et al. (1987) ha\;e asserted that to counteract the warming caused
by atmospheric CO;, an approximate doubling of CCN would be needed. It has also
been estimated by Ghan et al. (1990), using the NCAR Community Climate Model
One (CCM1), that in the absence of other moderating influences, the greenhouse
warming of the earth-troposhere system caused by a doubling of carbon dioxide
could be counteracted by a meager 1.7% increase in the shortwave albedo of global
low level cloud cover. Slingo (1990) has similarly assessed the potential effects of
increasing cloudiness, by showing that an approximate 15%-20% increase of the
amount of low clouds would be sufficient to balance the warming caused by a
doubling of CO, concentrations (see also Parungo et al. 1994). Charlson et al.
(1992) have recently estimated the current climate forcing due to anthropogenic
sulfate alone to be comparable in magnitude but opposite in sign to the current
forcings due to greenhouse gases. They have shown that anthropogenic aerosols, in
particular aerosol sulfate, are instrumental in this climate forcing by increasing the

levels of CCN, which, in turn, increase the number and lifetime of clouds, while at
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the same time reducing precipitation from those clouds (see also Fouquart and Isaka
1992, Parungo et al. 1994). Wigley (1991), and more recently Saxena and
Grovenstein (1993), have shown that climate is sensitive to changes in both CO; and
SO, emissions.

It is thus clearly pivotal to our understanding of anthropogenically driven
climate change to show quantitative differences in microstructure and reflectivity
between clouds formed in air masses with a variety of pollutant amounts. By
comparing these various types of clouds, we can better determine the present
anthropogenic climate perturbation, as well as make more precise predictions of
future impacts. Although much more data is needed, several important field studies
have been conducted that provide strong verification of many aspects of the
proposed mechanisms for pollution induced increases in cloud albedo.

During project METROMEX (Metropolitan Meteorological Experiment),
Braham (1974) has shown that anthropogenic effluents cause an increase in the
number concentrations of droplets and precipitation in clouds formed downwind of
urban-industrial regions. Alkezweeny et al. (1993) have found that clouds formed in
urban plumes from metropolitan areas increased droplet concentrations and
decreased the median volume diameter as compared with the clouds formed in
nearby unpolluted air masses.

Based on the work previously discussed, it is now known that changes in the
amounts of the CCN from which clouds form will have an impact on the climate by
inducing changes in the cloud albedo (Fouquart and Isaka 1992). Despite the
conclusions of Twomey (1977, 1984), who stated that the effects of increased
anthropogenic pollutant levels in clouds should result in higher cloud droplet

concentrations, decreased droplet sizes, and higher cloud albedo for all but the
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thickest of clouds (see also Raga and Jonas 1993), it is still not known what impact
these factors will have upon cloud albedo, i.e., whether the cloud albedo will
subsequently increase or decrease. There has been research on this subject, but
results have been contradictory, depending upon the geographical locations of the
studies in question. Investigative work by Kondrat'yev et al (1981) (see also
Coakley et al. 1987), have shown that anthropogenic effluents emanating from urban
areas tended to reduce the cloud albedo. However, Radke et al. (1989) have shown
that anthropogenic effluents can significantly enhance cloud reflectivity. In
investigations by Coakley et al. (1987) and during project FIRE [First ISCCP
(International Satellite Cloud Climatology Project) Regional Experiment] airborne
measurements were taken across ship tracks. The cloud reflectivity in both studies
was determined from the AVHRR (Advanced Very High Resolution Radiometer)
measurements aboard the NOAA-9 and NOAA-10 polar orbiting satellites,
respectively. The results of both studies with ship tracks showed an increase in total
droplet concentration, liquid water content, condensation nuclei (CN) concentration
and cloud reflectivity for the ship track clouds compared to the surrounding
uncontaminated clouds. If the ship exhaust was considered as a surrogate for
anthropogenic pollution, the change in cloud reflectivity produced as a result of
land-based emissions could cause considerable regional and perhaps global climate
perturbations.

The objective of this paper is to describe how anthropogenic poliution
affects cloud albedo through changes in cloud chemistry and microstructure at a
remote rural site. To the authors' knowledge, this is the first time that in sifu cloud
microphysical and chemical measurements have been compared with satellite

measured albedo over a land surface. As such, this paper should provide an
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important first observational description of the entire cloud-climate feedback

mechanism.

2. Methodology

Durkee et al. (1991) have asserted that satellite remote sensing, because it is
inherently indirect, should be coupled with ground-based in situ observations of
aerosol characteristics in order to gain a complete understanding of "the aerosol
particle distribution”. Both Twomey (1991) and Charlson et al. (1992) have
suggested that remote sensing of cloud properties, in addition to ground-based
observations, would help to delineate the primary properties of clouds and the
precursor air masses, which may be affected by anthropogenic sulfates and/or other
aerosols. Thus, based on their suggestions, as well as to help quantify some of the
previously mentioned data disparities, in situ cloud measurements have been taken
at Gibbs Peak (2,006 m MSL) in Mount Mitchell State Park (35° 44' 05" N, 82° 17"
15" W), in North Carolina, which is the highest mountain area east of the Mississippi
River in the United States (2,038 m MSL). This site has several important
advantages for the study of cloud microstructure and chemistry. The site, which
extends into the free troposhere, is far from local pollution sources, allowing for the
study of long range transport of both natural and anthropogenic aerosols. The site
also experiences cloudiness on 71% of the days during the summer (Saxena et al.
1989). Thus, sufficient data is obtainable in a single season to allow for detailed
analys’s. Additionally, because of the similarity between the forest canopy, which
from a satellite perspective is fairly smooth and consistent regarding the observed
temperatures of its surface, and the sea surface, which has been utilized, up to this
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point, as a primary area of remote sensing research into cloud chemical and
microphysical characteristics, we can take advantage of the Advanced Very High
Resolution Radiometer (AVHRR) satellite measurements of the cloud reflectivity.
Finally, due to its position in mid-latitude, eastern North America, the clouds
passing over the site vary in origin from heavily polluted to cleaner continental and
marine air masses. Recently the site was designated a United Nations Biosphere
Reserve, so that our measurements and others can be used over a very long time

span to accurately gauge regional climate change.
a. Cloud droplet size spectra and in situ cloud albedo

Cloud droplet spectra were obtained using a Particle Measuring Systems
Forward Scattering Spectrometer Probe (FSSP). The FSSP can accurately count
and size particles from 0.5 to 47.0 um. A description of the design and operation of
the FSSP is given by Knollenberg (1981). Spectra were taken every 3 seconds
during cloud events and later averaged over 5-minute and 1-hour intervals. From
each 15-bin size spectrum, total droplet concentration (N, m'3), average droplet
radius (ravg, um), and cloud liquid water content (w, g m°3) were easily computed.

Then cloud optical depth was calculated as follows (Twomey 1977):
1=h(9nw*N/2pH)" (1)

where h is the cloud thickness in m, N is the cloud droplet number concentration in

3

m™, w is the cloud liquid water content in g m'3, and p is the density of liquid water




(1,000 kg m'3). After calculating 7, the cloud albedo was evaluated as (Lacis and
Hansen 1974):
Ac=t/t+77 ().

For identical cloud liquid water content, larger N implies larger optical thickness and

thus higher cloud albedo.
b. Cloud water acidity and chemical composition

Cloud water samples were collected coincident with the FSSP spectra using
a passive string impaction collector similar to that described by Kadlecek et al.
(1983) and Mohnen and Kadlecek (1989). Samples were collected continuously and
retrieved hourly. On site pH measurements were made for each sample immediately
after retrieval. Samples were stored at 4 °C and later analyzed for chemical

composition using a Dionex 2010i ion chromatograph.
¢. Cloud condensation nuclei activation spectrum

A Horizontal Thermal Gradient Cloud Condensation Nucleus Spectrometer

(Fukuta and Saxena 1979) was used to measure CCN activation spectra in the form
n=CS* €))

where C represents the concentration parameter and is expressed in cm’, k is the

dimensionless slope parameter, and n is the cumulative number of CCN forming
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cloud droplets at the ambient supersaturation S (usually expressed in percent).
Knowing C, it is possible to correlate precursor CCN concentration in a cloud

forming air mass with the actual cloud droplet concentration.

d. Air mass determination

Meteorological data (wind speed and direction, pressure, and temperature)
were recorded and used for back trajectory analysis using the Hybrid Single-Particle
Lagrangian Integration Trajectories (HY-SPLIT) model (Draxler 1992). Forty-
eight hour 3-dimensional back trajectory graphs were generated for every cloud
sample in which FSSP data were recorded, using high-resolution Nested Grid Model
(NGM) data as the meteorological background source. The NGM data grid used
for model calculations has a 183 km horizontal resolution and a 2-hour temporal
resolution, with 10 vertical layers from the surface up to about 500 mb. The
mathematics involved in the calculations of the trajectories are all based on finite
differencing and interpolation approximations of the primary meteorological
equations of motion and meteorological thermodynamics between NGM data grid
points, and are explained thoroughly in Draxler (1992). All calculations of back
trajectories of air masses used an option whereby the vertical motion along the
trajectories was determined from the NGM background data itself. The model also
produced skew T-log P diagrams for selected times during the events, which were

used to estimate cloud base which represented saturation with respect to water.




e. Remotely sensed albedo

AVHRR measurements made from polar orbiting NOAA-10 and NOAA-11
satellites were used to determine the cloud reflectivity at the 0.63 um wavelength.
According to Durkee (1994), an approximation of the daytime reflectivity was
accomplished by assuming that the clouds over the observation site were
blackbodies at an 11.0 um wavelength, with the temperature of the clouds found

from the irradiance by the following equation, which is the Stefan-Boltzmann law:

F=ocT ().

F is the irradiance from the cloud in W m'z, o is the Stefan-Boltzmann constant
having the value of 5.67 x 10 W m K™, and T is the effective temperature of the
cloud in K. The irradiance was assumed to be known from the satellite instrument
observations. Thus, in order for the cloud reflectance to be accurately determined,
the cloud top temperature for the 11.0 um wavelength was derived using (4) above
and the emitted component of the 0.63 um wavelength was estimated and removed,
leaving the 0.63 pum reflectivity. The direct albedo measurements were then

compared to values calculated from the droplet distributions.

3. Results and Discussion

Measurements were made during 39 individual cloud events between June
and October 1993. Out of this data, 113 cases were available with simultaneous

FSSP spectra, cloud water acidity and ionic composition data, and meteorological
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data. Twenty-one CCN spectra were taken. Nine cases coincided with AVHRR
retrievals.

Figure 1 shows frequency distributions of the 113 hourly cases for cloud
acidity and microstructure measurements. The number of cases for each
measurement interval is split up to indicate the contribution from each air mass
regime. The following coding scheme has been employed: 'p' refers to back
trajectories passing through polluted areas, 'mp' refers to back trajectories crossing
both marine and polluted areas, 'm' refers to back trajectories confined to marine
regimes, ‘cp’ refers to back trajectories crossing both continental and polluted areas,
'cmp' refers to back trajectories crossing all three areas, and 'c' refers to back
trajectories confined to continental areas. It is seen that cloud water pH, cloud
droplet number concentration, radius, and liquid water concentration all varied
significantly. = More explicitly, pH ranged from 2.51 to 4.78, droplet number
concentration ranged from 30 to 939 em™, cloud droplet radius ranged from 1.9 to
8.4 um, and liquid water concentration ranged from 0.01 to 0.65 g m™>. It can be
concluded from figure 1 that these data represent a good variety of air mass origin,

pollution content and cloud microstructure cases.

a. Cloud microstructure and acidity

When a cloud forms in a polluted air mass, the concentration of cloud
droplets will be high, due to elevated concentrations of CCN. Then limited available
liquid water guarantees that rayg will remain small. To investigate the relationships
between pH and N and between pH and r,v,, we calculated correlation coefficients
and produced scatter plots using the corresponding data pairs for all 113 available
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cases. Figure 2 shows that pH decreased with increasing cloud droplet number
concentration (r2 = 0.64). Figure 3 shows the positive relationship between pH and
average droplet radius (r2 =0.47). The ® value for pH and w (not shown) was less
than 0.01; therefore pH is independent of cloud liquid water content. Thus cloud
water pH is strongly correlated with both droplet size and concentration. Since the
clouds formed at the site were essentially moisture-limited, these results were
expected. When a larger number of droplets are present, they must compete for the
available water and the moisture is depleted while the droplets are still small. The
droplets form solutions of acidic sulfates and nitrates which comprise the CCN.
Since the droplets are small and have little liquid water to dilute the solution, acidity
remains high and the pi! remains low.

To further investigate the dependence of pH on cloud microstructure and
provide a bulk quantification, the 113 cases were sorted into three populations: pH
<3.0(n=18),3.0< pH<3.7(n=71), and pH = 3.7 (n = 24). The average values
for N, rayg, w, and pH are shown for each population in Table 1. The + values
represent standard errors. It is seen that low pH values were associated, on
average, with higher number concentrations and lower average radii; high pH values
were associated, on average, with lower numnber concentrations and higher average
radii; intermediate pH values were associated, on average, with intermediate values
of both number concentration and average radii; while liquid water content was

stutistically consistent across populations.
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b. Cloud albedo and cloud microphysics

Our primary objective was to determine the effect of pollution content on
cloud albedo. Nine cases coincided with satellite passage such that AVHRR
retrievals allowed direct measurement of the visible albedo of the overlying cloud
cover at the site. These events, which were all from short orographic cloud events,
except for one, covered a large range of pH values and thus represented clouds
formed in air masses with a variety of pollutant levels. Each of the three pH
populations given above is represented by one or more cases.

Summaries of the pH, cloud microphysical parameters, CCN, and cloud
thickness (h) versus cloud reflectance (AVHRR and in situ) instances are given in
table 2. Using the data in table 2, we have subsequently derived plots of both
AVHRR and in situ reflectivity values [calculated from (1) and (2)] versus cloud
droplet number concentration and average droplet radius in figures 4 and 5. Error
bars in the x-direction in figure 4 reflect the standard instrument error potential of
the satellite measuring platform (here indicated to be an across-the-board 5%
instrument error potential for all values) and the y-direction error bars are the result
of assuming a standard, across-the-board 17% error possibility for both droplet
number concentration and average radius (Baumgardner 1983), as calculated from
the FSSP data. No error bars for the in situ albedos in figure 5 were calculated due
to high error probability of the cloud thicknesses from table 2. In figure 4, a direct
proportionality between reflectivity and number concentration is indicated, while a
similar but reversed trend is observable for albedo versus average radius. The
regression statistics for N versus the AVHRR albedo are: slope = 29.57, intercept =
-910.93, and ? = 0.79. For ravg vVS. AVHRR albedo we have the slope = -0.19,
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intercept = 13.65, and 2 = 0.97. Figure S shows very similar characteristics to
figure 4 for calculated albedos using (1) and (2). Here, the regression statistics for
N versus the in situ albedo are: slope = 24.62, intercept = -715.70, and 2 = 0.76.
For rayg versus in situ albedo we have the slope = -0.16, intercept = 12.17, and =
0.89. All of the observations as given in figures 4 and 5 are consistent with the
findings of Coakley et al's (1987) ship-track observations, which showed that
elevated levels of pollutants in clouds will result in higher reflectivity, which in turn
tends to increase cloud droplet number concentrations and decrease average droplet
radii, assuming a constant amount of available liquid water.

Again from table 2, we generated plots of pH and CCN .-ancentrations
versus the nine cases of AVHRR and in situ albedo in figures 6 and 7, respectively.
For instances of pH versus AVHRR reflectivity in figure 6. there is a clear inverse
relationship between the pH and albedo (slope = -0.06, intercept = 6.25, = 0.83),
and a good positive correlation between CCN concentration and albedo (slope =
35.09, intercept = -1023.50, P = 0.70). Figure 7 shows the same parameters as
figure 6 measured against the in situ albedo, with similar trends (slope = -0.05,
intercept = 5.74, = 0.72, for pH versus albedo, and slope = 29.85, intercept =
-821.85, 2 = 0.70 for CCN concentration versus albedo). All error bars in these
two figures represent 5% instrument error potentials for the pH probe, CCN
spectrometer, and the AVHRR satellite platform. For some of the cases no actual
CCN measurements were available. For these cases, CCN values were selected
from other cases with similar pH. The CCN relationships from both figures 6 and 7
give strong evidence that heavily polluted air masses produce clouds with higher
albedos than cleaner air masses. The clouds formed in air masses with high CCN

concentrations have correspondingly high cloud droplet number concentrations,
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while the droplet size remains small, compared to clouds formed in lower CCN air
masses. This distinction in droplet size distribution results in lower pH, higher

albedo clouds for the more polluted clouds compared with the cleaner clouds.

c. Air mass history of AVHRR cases and cloud water chemistry

The results of each of the trajectory calculations corresponding to the nine
cases are shown graphically in figure 8. Continental air masses were, for most
calculations, associated with elevated pH levels (except for the June 8 case), while
trajectories crossing more than one area were associated with highly variable results.
Marine air masses were in all cases shown to cross other areas as well, giving a wide
variety of results, but for the 19 June case, the only one in which the trajectory was
mainly marine, the corresponding pH value was fairly high (3.77 + 0.18). The two
cases where polluted trajectories were represented (18 and 19 August) were
associated with low pH values, which would be expected. It is also evident that the
calculation indicated a small amount of polluted influence for 14 June, which
appears to be reflected in the low pH value. Only the 8 and 14 June satellite
coincident cases resulted in conflicting or contradictory results when comparing air
mass history with cloud water pH. The 8 June case was shown to have continental
air mass history, but was paired with a pH value more indicative of polluted
character. The 14 June case was almost impossible to prioritize concerning the air
mass history because a wide variety of air mass emission characteristics were
shown to be crossed, but the pH value for this case indicates that polluted areas

contributed significantly to the pH reduction.
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Except where mentioned above, strong corroboration with the back
trajectories as well as the observed pH values is provided by the various
concentration values of cloud water ionic species in table 3, where high sulfate,
nitrate and ammonium concentrations are allied with polluted influence. Similarly,
very low concentrations of these ions were indicated for the 19 June and 6 August
cases, where the air masses were shown to consist of marine and continental
passage. High concentrations of chloride and sodium ions, which would normally
be associated with marine origin, were indeed matched with marine inclusive air
masses. Calcium and magnesium ions, usually associated with continental air
masses, were shown to have their highest values associated with a variety of air
mass combinations, but the highest calcium receipt was associated with polluted/
continental passage from 18 August. The potassium ion receipts were all very low,
but the highest values were found with air masses containing marine history, which
would be expected, since this ion is often in chemical combination as KCI. Again,
all of the preceding discussion must exclude the 8 June case, where elevated
concentrations of all ions were observed from what was shown to be a continental
air mass. [t is possible that early-season chemical measurement errors may have
contributed to the apparent anomalies for this case. No ionic data for the 3 Qctober
case was available, and due to the time of the season in which this case was
observed and the extreme value of the observed pH, no suitable substitute from the
preceding times during the field season could be used. A few other cases in tabie 3
also had no associated ionic constituency data, but in those cases ionic data from the

same cloud event with very similar pH values were substituted.
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4. Conclusions

Cloud pH, microstructure, and albedo are closely related to the CCN
loading, and hence the pollution content of the cloud forming air mass. Cloud pH is
largely controlled by cloud droplet size. For a given liquid water content, the
average droplet radius is limited by the droplet concentration, which is controlled
by the amount of CCN present in the cloud-forming air mass. Pollutants, primarily
acidic sulfates and nitrates, undergo gas-to-particle conversion and form efficient
CCN. Thus the amount of pollution present in the cloud forming air mass will affect
the droplet size distributions. Since droplets themselves are the source of cloud
reflectivities, cloud albedo is controlled by the droplet distribution and varies
inversely with pH. With greater initial CCN concentration, low pH, high albedo
clouds form and limit the flux of solar radiation reaching the earth's surface.
Averaged over space and time, by increasing the mean cloud cover albedo,
anthropogenic effluents produce an important cooling effect on regional climate.
Due to the inhomogeneous emission of aerosol precursor gases over the earth's
surface, and due to the short residence time of aerosol in the atmosphere, this effect
is expected to vary perhaps greatly over time and region. We have shown for the
first time over a continental land mass that anthropogenically produced CCN have a
direct effect on cloud albedo and, by extrapolation, produce an important cooling
perturbation on regional climate.
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Appendix' The following tables and figures are all cross-referenced with material from
Section I. They mainly provide data and diagrams concerning individual assessments of
air mass history versus cloud water chemistry for each of the main months of sampling
from the 1993 field season. Thus, most of the data are specifically concerned with analysis

from either June or August of 1993.
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Table Al. File of input parameters for running the HY-SPLIT trajectory model.

01
BACK
DATA
06
08
02
03

TIME STEP; TRAJECTORY ADVECTION STEP (hrs)

DIRECTION; OPTIONS (FWRD or BACK)

VERTICAL MOTION; OPTIONS (ISOB DATA DIVG ISOS)

STARTING MONTH; ZERO USES CURRENT DATA FILE

DAY, RELATIVE IF MONTH ZERO

HOUR; IF <0 THEN POSITION METEO BUT NO EMISSIONS

DAYS TO RUN; ALWAYS IN WHOLE DAYS REGARDLESS OF

START HOUR

METEO FILE, SUFFIX (BIN) OPTIONAL

ORIGIN LATITUDE; USE NEGATIVE FOR SH (deg and frac)

LONGITUDE; WEST IS POSITIVE (deg and frac)

HEIGHT; METERS FOR AGL OR MB FOR MSL (use suffix P)

SOURCE VALUE, ARBITRARY UNITS PER HOUR

EMISSION HOURS, PER INTERVAL SPECIFIED

INTERVAL; HOURS BETWEEN REPEAT OF EMISSION

HOURS

OUTPUT/AVERAGING PERIOD; APPLIES TO ALL MAPS OR

FILES (hrs)

# OFFSET TIME, TIME OF FIRST OUTPUT (gmt hour)

# CONCENTRATION INDEX; INDEX NUMBER FOR OUTPUT (0

for deposition)

1 # HEIGHT OF INDEX, IN METERS ZERO DEFAULTS TO METEO
GRID HEIGHTS

STEP # DISK OUTPUT OF ENDPOINTS; OPTIONS (READ WRITE MOD
STEP NONE)

NONE # CONCENTRATION; OPTIONS (WRITE MOD NONE)

TRAJ # MAP OUTPUTS; OPTIONS (TRAJectory SNAPshots
CONCentration NONE)

NONE # RUNTIME GRAPHICS; OPTIONS (NONE YES)

B R S

JUN93.001
35.73
82.29
808.0P

0.0

1

9999

45 3 3 R R W H

F*

01

NUL # ASCII PRINTER; OPTIONS (CONsole LPT FILE NUL)

45.0 # MAPLAT UPPER RIGHT; IN DEGREES AND FRACTION

27.0 # LAT LOWER LEFT; POSITIVE AND NEGATIVE AS ORIGIN

770 # LON UPPER RIGHT; SIZE DETERMINED BY VERTICAL
HEIGHT

103.0 # LON LOWER LEFT;, WIDTH ALWAYS 1.3 TIMES HEIGHT
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ABSTRACT

ULMAN, JAMES CHARLES. Impact of Air Mass History on the Chemical,
Microphysical, and Radiative Properties of Clouds at Mount Mitchell, North
Carolina. (Under the direction of Vinod K. Saxena and Viney P. Aneja.)

SECTION I. Cloud water acidity and ionic content, as measured at the
Mount Mitchell State Park observing site (35° 44' 05" N, 82° 17' 15" W, 2038 m
MSL--highest peak in the eastern U.S.), using a passive cloud water collector, are
directly influenced by the trajectories of cloud forming air masses which pass over
areas of varying levels of pollutant emission. Regions of the United States which
are emitters of high levels of pollutants, such as SOx and NOy, will thus serve to
reduce observed pH levels in cloud water samples and raise the levels of acidifying
ions, such as sulfate and nitrate. Cloud water is one of the best indicators of
pollution levels because all water soluble impurities in one cubic meter of air from an
air mass are found condensed in typically one milliliter or less of the cloud water.
The 48-hr backward trajectories for all 39 cloud events during the 1993 field season
(15 May 1993 - 14 October 1993) were computed using the Hybrid Single-Particle
Lagrangian Integrated Trajectories (HY-SPLIT) model. Three sectors, identified as
the polluted sector, from 290° to 65° azimuth relative to the site, the continental
sector, 240° to 290° azimuth, and the marine sector, 65° to 240° azimuth, were
used to classify the cloud forming air masses. The polluted sector was associated
with the lowest overall pH averages, with the marine sector following closely
behind. The highest average pH values were received from air masses indicated as

having crossed the continental and the marine sectors (in combination), with the




largest portions of those air mass trajectonies passing through the continental sector
(exclusively continental sector air masses were also the most frequent). These
observations are in agreement with findings in Colorado where aerosols produced by
wind erosion were responsible for neutralizing the precipitation acidity.

SECTION II. In situ cloud measurements were taken during 39 individual
cloud events between June and October 1993 in Mount Mitchell State Park, North
Carolina. Cloud droplet spectra, obtained using a Forward Scattering Spectrometer
Probe (FSSP) were used to determine total droplet number concentration, average
droplet radius, and liquid water concentration. A total of 113 hourly cases were
recorded with simultaneous FSSP spectra, cloud water acidity, ionic content, and
meteorological data. A positive correlation was detected between the cloud water
pH and droplet radius (r2 = 0.47). Also, a negative correlation was detected
between the cloud water pH and droplet number concentration (r2 = 0.64). The
data were then sorted into three popuiations based on the pH: pH < 3.0 (n = 18),
3.0 < pH < 3.7 (n=T71), and pH > 3.7 (n = 24). It was observed that lower pH
values were associated, on average, with higher cloud droplet number
concentrations and lower radii, and vice versa. For nine cases, cloud albedo was
determined from measurements of the NOAA satellite-based Advanced Very High
Resolution Radiometer (AVHRR). These albedos were shown to vary directly with
the number concentrations of cloud droplets and cloud condensation nuclei (CCN)
and inversely with the average droplet radius and cloud water pH. Cloud reflectivity
values calculated from in siru cloud microphysical and meteorological measurements
were found in agreement with the values obtained from the AVHRR within error
limits. Air mass history of the nine cloud cases was determined from back

trajectories calculated with the Hybrid Single-Particle Lagrangian Integrated




Trajectories (HY-SPLIT) model. It was shown that the air mass trajectories were
consistent with the experimental values of cloud water pH and cloud water ionic

content, the polluted air masses being associated with higher cloud albedos.




ABSTRACT

JAMES CHARLES ULMAN, Captain, USAF. 1994, 115 pp., Master of Science, North
Carolina State University.

Impact of Air Mass History on the Chemical, Microphysical, and Radistive
Properties of Clouds at Mount Mitchell, North Carolina.

Cloud water acidity and ionic content, as measured at the Mount Mitchell State
Park observing site (35° 44' 05" N, 82° 17' 15" W, 2038 m MSL--highest peak in the
eastern U.S.), using a passive cloud water collector, are directly influenced by the
trajectories of cloud forming air masses which pass over areas of varying levels of
pollutant emission. Regions of the United States which are emitters of high levels of
pollutants, such as SOy and NOy, will thus serve to reduce observed pH levels in cloud
water samples and raise the levels of acidifying ions, such as sulfate and nitrate. The 48-
hr backward trajectories for all 39 cloud events during the 1993 field season (15 May
1993 - 14 October 1993) were computed using the Hybrid Single-Particle Lagrangian
Integrated Trajectories (HY-SPLIT) model. Polluted trajectories were associated with
the lowest overall pH averages, with the marine trajectories following closely behind.
For nine cases, cloud albedo was determined from measurements of the NOAA satellite-
based Advanced Very High Resolution Radiometer (AVHRR). Air mass histories of
these cases were shown to be in good overall agreement with expected values of cloud
water pH and cloud water ionic content, with polluted air masses indicated to be
associated with higher cloud albedos than clouds formed in less polluted air masses.
This was the first time over a continental land area that such a study has been

accomplished.
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